

Future Technology Directions

Precision Formation Flying Missions and Technologies

Daniel P. Scharf, Senior Engineer Lead Engineer, TPF-I Formation Flying

Formation Flying

- Formation: S/C coupled by automatic feedback control with direct or indirect coupling between all S/C
- Tightest requirements for synthetic apertures
 - Driver is stroke limitations of optics
- GEO Sparse Aperture: DARPA LASSO
 - Millimeter-level error box
 - Arcsec-level attitude control
- Deep Space Nulling Interferometer: TPF-I
 - Sub-cm to several centimeter error box
 - Arcsec to sub-arcmin attitude control
- Deep Space Fizeau Synthetic Aperture:
 Stellar Imager
 - Sub-cm-level error box
 - Up to 32 S/C = LARGE formation
 - Arcsec to sub-arcmin attitude control

Applications

- Aperture Synthesis
 - Exoplanet detection and characterization
 - Astrophysics
 - Surveillance
 - Communications
 - Synthetic Aperture Radar (SAR)
 - Interferometric SAR (InSAR)
- Automated Rendezvous and Proximity/Docking Operations
 - Lunar/Martian Sample Return
 - On-orbit Manufacturing
 - On-orbit Assembly
 - On-orbit Servicing
 - Reconnaissance of Space Assets

Manufacturing and Assembly of a Sparse Aperture

QuickTime™ and a Cinepak decompressor are needed to see this picture.

leeus on partnering

UNDER STUDY

U.S. Distributed Missions

2005

2000

2010 2015 2020+

Planned Launch Year

Non-U.S. Distributed Missions

A-Train spacecraft

Aspics

MIRYADE SPACECRAFT supporting the external occulter

2000
Briefing for Industry

2005

2010

2015

2020+

Technology Challenges

- Formation guidance and control
 - Synchronous reconfiguration and reorientation
 - Scalable decentralized/distributed guidance, control, and estimation
 - Relative position and attitude control for precision interferometry
- High-precision and large-FOV sensors
- Extremely high-precision, low noise thrusters and wheels
- Scalable inter-spacecraft communication
- High-speed distributed computing, data management and autonomy
 - Collaborative behavior
 - Autonomous fault detection and recovery
 - Coordinated instrument and science planning/processing
 - Efficient numerical integrators which handle large scale variations in states (relative position and attitude)
- High-fidelity modeling and distributed real-time simulation
 - Eventually including payloads
- HW Testbeds
 - 6DOF for development and ground validation

Summary of Formation Test Facilities at JPL

High-fidelity, flight-like, ground-based capability to simulate and validate end-to-end multi-spacecraft missions

Collaborative System Demonstrations

Summary

- Many new and challenging distributed spacecraft missions and concepts
 - New capabilities, new discoveries, new science
- Intelligent space vehicles needed with increased autonomy
 - Operate distributed spacecraft as a single entity with a single operations team
- Distributed, collaborative systems in space will need
 - New hardware, GNC methodologies, system development approaches, and system architectures
- New testbed concepts, testing environments, and flight demonstrations key to success
- Significant increase in non-US distributed spacecraft technology investment and planned flights

JPL Contacts

Dr. Fred Y. Hadaegh, Senior Research Scientist Manager, Distributed Spacecraft Technology Program Office (719)

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, MS 198-326
Pasadena, Ca 91109

TEL: 818 354-8777

FAX: 818 393-4440

hadaegh@jpl.nasa.gov

